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Abstract —The finite element method is a well-established method for

the solution of a wide range of gnided wave problems. One drawback

associated with the powerful vector formulation is the appearance of

spurious or nonphysical solutions. A penalty function method has been

introduced to the finite element formulation, to reduce or eliminate spuri-

ous solutions. It also improves the quality of the physical field solutions.

The method has been applied for the solution of metallic homogeneous and

inhomogeneous guides, and integrated optics guides.

I. INTRODUCTION

T HE FINITE ELEMENT method has become a power-

ful tool throughout engineering for its flexibility and

versatility. This is a powerful technique for complicated

electromagnetic, structural, heat, or fluid flow problems.

There are a few different types of variational formulations

which are available to solve electromagnetic wave propaga-

tion problems. A scalar variational formulation [1] which is

simplest among them, is limited in scope, not being suit-

able (except as an approximation) for general inhomoge-

neous and general anisotropic problems. There are differ-

ent types of vector variational formulations such as E, /lZ,,

E, H, and E + H, and these are suitable for a wide range

of practical complicated waveguides. However, these vector

finite element solutions have been known to include non-

physical spurious solutions [2]–[12]. Variational formula-

tions using transverse field components [13], [14], solved by

the Rayleigh-Ritz method or method of moments, do not

have spurious solutions, but these formulations are not

valid for general anisotropic materials, the functional are

not self adjoint, and because of the additional differentia-

tion involved with them, these are not very attractive for

their implementation in a finite element method. The non-

appearance of spurious solution in this formulation may be

due to the divergence free basis functions.

Though the existence of spurious solutions has been
quoted by many authors, little work has been done to

reduce their number or to eliminate them. Konrad [5]

suggested imposing boundary conditions rigorously to

eliminate them, but that did not prove to be adequate [11],

[12]. Mabaya et al. [6] have reduced the number of spuri-

ous solution for E, /Hz formulation, by explicitly enforcing

the continuity of the tangential components of the trans-
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verse fields at the interfaces by using Lagrange multipliers.

The disadvantage of that method was the greatly increased

complexity of the program and of the increased numerical

operations necessary to enforce those continuity condi-

tions; also this E= /Hz formulation is limited to a diagonal

permittivity tensor. In this paper we will describe use of a

penalty method to reduce or eliminate spurious solutions.

A bonus of the penalty method, as reported in other

applications [15], is found in the significantly improved

smoothness of the resulting field.

II. SPURIOUS SOLUTIONS

The most serious difficulty in using a vector finite ele-

ment analysis is the appearance of extraneous nonphysical

or spurious modes [2]–[12], Spurious solutions do not exist

in a scalar formulation because the operator is positive

definite, but with a vector finite element method the opera-

tor is no longer positive definite. In defining a vector field

fully, we need to define both the curl and the divergence of

the vector field at every point in space. In the conventional

vector field finite element formulations, their Euler equa-

tions satisfy Hehnholz’s equations but do not satisfy divB

= O. This may cause the system to be excessively flexible,

which in turn is believed [11] to be responsible for spurious

modes.

Spurious solutions are found to spread all over the

eigenvalue spectrum, some of them appearing below any

true modes and some between the physical modes. As one

increases the mesh refinement to improve the accuracy of

the solution the number of spurious solutions also in-

creases.

If one wants to compute a set of eigenmodes, it is

difficult and quite cumbersome to distinguish between the

spurious and the physical modes of the guide. Spurious
modes can be identified by observing their dispers@ curve

[2], [4]. Another simple way to identify them is to %serve

their eigenvectors. In the case of a nonphysical mode the

fields vary in an unreasonable, sometimes random fashion

over the guide cross section, so that a plot of the field

solution can also provide a good, if somewhat tedious test

[3]. They can also be checked by observing convergence of

the solution with mesh refinements. Because of the incon-

sistent spatial variations of the field for the spurious eigen-

modes, if one calculates its divH it will be quite high
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compared to that of a physical eigenmode. This criteria has

been successfully used [11], [12] to filter out most of the 2!

spurious solutions from a set of calculated eigenvectors.

Rather than calculate the spectrumand eigenvectors and

then filter out, a posteriori, any spurious solution, the

strategy of this new work is to apply the constraint a
E2.
:20

priori; spurious modes should then be removed rather than %
just recognized. We have added the least squares constraint

,s
.

of satisfying diviY to the original functional J so that

explicitly the Euler equations are the Helmholtz equation
\

1
plus the vanishing of div.H. ~

z 15

#

III. PENALTY METHOD %
6

The penalty method [16], [17] can impose a specific
,+
;

constraint on certain solution variables, and it has been I
used in structural engineering problems to impose specific 10
boundary conditions [16]. This method has also been suc- +
cessfully used to eliminate spurious solutions in acoustic +

guide problems [15]. For our electromagnetic problem we g

add a functional whose Euler equation is the satisfaction of $

divB = O.
*
5

We have considered the penalty method, used with the

full vector H field formulation. This formulation has been

chosen because of its accuracy near cutoff, ability to con-

sider general lossless arbitrary tensor permittivity, and I

natural field continuity across the interelement boundaries 01

[12]. This often quoted Berk’s [18] formulation can be

matrix order
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written as [5], [10]–[12] Fig. 1. Location of physical eigenvaluesin the spectrum,percentageof
cutoff frequency error, and computing time as function of mesh divi-

sion and matrix order.

J(vxH)*. {-l. (vx H)dL?
622= (1)

IV. RESULTS

J
.,

H* .fiHdG We have used the penalty method to eliminate or reduce

spurious solutions to various problems, the first being

homogeneous and then inhomogeneous-loaded metal wave-

When we add the penalty constraint, the augmented func- guide where we know the exact solutions. We then con-

tional can be written as tinue to some integrated optic structures.

J(vx H)*.: -l(vx H)dfl+(a/fo)J( voH)*. (v. H)dfil
~2 =

J

(2)

H*. fiHdQ

where a is the penalty number. This equation has the

desired additional Euler equation divB = O, in precisely the

manner that terms are added [18] to give desired boundary

conditions. The constraint is imposed in a least square

sense: the larger the value of penalty number, the heavier is

the constraint imposed on the corresponding Euler equa-

tion. In using the penalty method, one important consider-

ation is the choice of an appropriate penalty number; this

will be discussed in the next section. This imposition of the

constraint can be compared with the changing of natural

boundary conditions of an Euler equation by introducing

an additional appropriate integrand [18]. One advantage of

using the penalty method is that it does not increase the

matrix order, and the additional computational time is

negligible.

—

A. Hollow Rectangular Metal Guide

We have chosen this first problem because of its simple

closed form solutions. Applying the finite element method

[1], the accuracy of the solution depends on the mesh

refinement and order of the shape functions. For higher

accuracy we need finer mesh divisions or higher order

shape functions, but increasing either the number of mesh

divisions or the order of shape functions increases the
number of spurious solutions. The effect of mesh has been

shown in Fig. 1 for a rectangular guide considering only

one-quarter of the guide (using two symmetric magnetic

wall planes). Using first degree shape functions, the ab-

scissa denotes the number of mesh divisions in each coordi-

nate (and the corresponding matrix order); the right-hand
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Fig. 2. Variation of k: with penafty term for hollow rectangular wave-
guide, finite element division 7 x 7.

ordinate gives the computing time (in millions of opera-

tional counts) and the left hand gives, for the first four TM

modes, the resulting cutoff frequency error and its location

(order) in the computed spectrum.

Fig. 2 shows the variation of computed eigenvalue (k:)

for TE and TM modes at cutoff with the penalty parameter

(for mesh division = 7). All the spurious solutions in this

part of the spectrum come from the origin, varying almost

linearly with a and having quite large but different slopes.

Eigenvalues for true TM modes increase very slowly with

penalty parameter, but for TE mode do not vary with a (at

cutoff). In Fig. 3 we can observe the locations in the

spectrum of the TEII and TMII modes, as a is increased

from zero, where the locations are 19 and 20, respectively.
At a equal to 0.5, the TEII and TMII mode now appear at

2 and 3 eigenlocation, respectively; i.e., there is only one

spurious mode before the first two physical modes, instead

of 18 when no penalty term has been added. Similarly we

can see at a =1.1 there is no spurious solution before the

first two eigenvalues. We can also observe that there are 7

spurious modes between TMII and next physical mode

TM31 for a zero, whereas at a = 1.1 there is only one

spurious mode among the first four physical modes. Look-

ing at Figs. 2 and 3, we see how one can eliminate spurious

modes among any number of dominant physical modes.

The error associated with the physical modes are quite low,

particularly for the lower order modes. For TE modes at

‘i Ill
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Fig. 3. Reduction of spurious solutions with penalty term for hollow
rectangular waveguide, mesh division 7 X 7.
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Fig. 4. Variation of k; with penrdty term for hollow rectangular wave-
gulde, ~ = 0.5 rad/mm, mesh division 9 x 9.

cutoff there is exceptionally no addition of error from the

penalty term as the additional term of (2) is identically zero

in this formulation at cutoff. This is because the TE mode

at cutoff has a longitudinal component only of H field, to

give a divergence-free field.

Fig. 4 shows the variation of k: with penalty parameter

a. Here we calculate the TM modes above cutoff, at a fixed

propagation constant = 0.5 rad/mm and using a mesh

division of 9. Here again, as in Fig. 2, k; varies very

slowly with a for physical modes but rapidly for spurious
modes. It is of interest to examine the field solution for

these spurious modes, and for the above problem with a

zero, the magnetic fields are shown of the physical TMII

mode in Fig. 5 and of the spurious ‘S1l’ mode in Fig. 6. In

these figures we have considered only one-quarter of the

guide using two-fold symmetries with the two magnetic

walls. For the TMII mode, the HX and HY spatial varia-

tions and their vector combinations are consistent, but not

for the Sll mode. Specifically 13HX/8x and iS~V/8y have

opposite signs throughout the region for the TMII mode

but the same sign for the S1l. The latter solution is there-

fore incapable of satisfying divli = O, and so is not physi-

cally admissible.



RAHMAN AND DAVIES: IMPROVEMENT OF WAVEGU2DE SOLUTION BY FINITE ELEMENTS 925

,
7 —-- -“” ““ ‘{~

l-+ --- -’” 4

A-. ., \\ \ \

L+. . \\ 6 & b

4 ..,, ,

:

L.-y.:...:.‘ ‘ : : : ;.. b -------------- .~. --j..-

tiagnctic symctry plants

H field for TM,, mode

Fig. 5. H field vector for TM1l mode, in one-quarter of the hollow

guide (considering two magnetic symmetry planes), mesh division 9x 9.

Fig. 6. H field vector for spurious ‘&l’ mode, in one-quarter of the

hollow guide (considering two magnetic symmetry walls), mesh division

9x9.
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Fig. 7. Reduction of spurious solution with penafty term, for hollow
rectangular waveguide, mesh division 9 X 9.

Fig. 7 shows the reduction of spurious solutions with a

for this same mesh refinement of Figs. 4-6. Fig. 4 also

shows the error introduced by this penalty method. At

a = O the percentage of error was 0.27 percent for the TMII
mode (due to mesh divisions, word length, etc.). At a = 0.5

the increase in error due to this penalty method was only

0.05 percent and the error increases by about 0.13 percent

at a =1.1 for the same TMII mode. Fig. 8 shows the

variation of H, and HY field along the x direction (for HX

field at the center of the wide. for H.. field at the to~ edge

Lo-
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Fig. 8. Hx and H,, field variation with x direction, mesh division 9 x 9.
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Fig. 9. H, and H, field variation with y direction, mesh division 9 x 9.

Fig. 10.
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Variation of k? with penafty term for inhomogeneously loaded
metal guide, mesh division 8 x 8.

of the guide) for a = O and a = 0.5, while Fig. 9 shows the

variation along the y direction for a = O and a = 0.5. These

figures showed dramatic improvements in smoothness of

eigenvectors when applying the penalty functional— a fea-

ture noted in other applications of the penalty function

[15].

B. Inhomogeneous~ Loaded Metal Guide

A rectangular inhomogeneous waveguide problem has

been solved using the vector H field finite element formu-

lation. This problem involves a material discontinuity which

fives rise to different wavenumbers of k. and k., in the



926 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTr-32, NO. 8, AUGUST 1984

Inhomogemously-loaded metal waveguide

Fig. 11. Reduction of spurious solutions for inhomogeneously loaded
metal guide with penalty term, mesh division 8 x 8.

two different regions. The variation of k; (the cutoff value

k:= U21MO) with a is shown in Fig. 10, Here the k; for

LSE modes varied slightly with a whereas LSM modes

remained unchanged, Similarly as in Fig, 2 or Fig. 4, k: of

spurious modes varied linearly with a with quite large

slopes. Fig. 11 shows the reduction of spurious mode with

a. When no penalty method was applied, then among the

first 32 modes only 4 were physical modes, whereas at

a =1.0, there were only two spurious modes among the

first 10 modes and no spurious mode appeared before the

first 2 physical modes. With no penalty function, error for

the LSEII mode was 0.52 percent, but at a = 0.5 it in-

creased by 0.5 percent and at a =1.0 by another 0.8

percent. Percentage errors for the LSM modes were un-

changed with a,

C. Rectangular Dielectric Guide

We have used the penalty function to see its effect in

reducing spurious solution for optical guides. For this we

first solved rectangular dielectric waveguide, where again

we can exploit its two-fold symmetries to reduce matrix

order. We first used a coarse mesh to allow using a dense

matrix routine, and the reduction of spurious modes is

shown in Fig. 12. Most of the spurious modes appeared at

the beginning of the spectrum when using no penalty

function; there were 53 spurious modes before the first

physical solution, the H:l mode. When applying a penalty
of a =1.0, then, there was no spurious solution before the

first physical mode, It was not possible to calculate the

absolute error as no analytical solution is available for this

problem, but for this mesh size (5 inside the guide and 2

outside, for each of the x and y dimensions, and matrix

dimension 169) variation of frequency was limited to ~ 0.2

percent over a wide range of a, and additional computa-

tional time was less than 2–3 percent. Similarly, for a

smaller number of mesh divisions (order of matrix 108) the

number of spurious solutions was 36 before the H~l mode,

but with a penalty parameter= 1.0, all of them had been

shifted above the real mode.

\
I \\ p =16 [pm-’)

Fig. 12. Reduction of spurious solution for rectangular dielectric wave-
guide with penalty term, total mesh division 7 x 7,

D. Channel Waveguide

Channel waveguide is an important optical waveguide,

which again we solved using a full vector H field formula-

tion. This type of waveguide is a combination of three

types of dielectric materials, with waveguide permittivity

differences between guide and substrate that are quite

small. We now have only the single symmetry plane, and

for reasonable mesh refinement and accuracy the matrix

order becomes quite large— too large for dense matrix

subroutines. We have therefore used a very efficient package

that takes full advantage of the sparsity and symmetry of

the matrices [11]. As a Sturm count was not available in the

real symmetric version of this package we could not de-

termine the absolute location of a particular eigenvalue in

the spectrum. The reduction of spurious modes below the

first physical mode 11~1 is shown in Fig. 13 over the range

of a = 1–104. The number of spurious solutions reduces

uniformly with a; at a = 1.0 there were 31 spurious modes

before the H~l mode, whereas for a =104 their number

reduces to only 1. In the same range of penalty terms we

have illustrated the eigenvalues in Fig. 14. Spurious solu-

tions are represented by the crosses whereas the first physi-

cal mode Hfi is represented by a circle. At around a = 2500,

we observe the degeneracy of two modes, the H~l with a

spurious mode. The eigenvalue of H;l varies very slowly

with a and the number of spurious modes below this H:l

mode falls rapidly, We scanned the spectrum for a = O over

a considerable range, eigenvalues starting from zero, and

we believe the number below the first H;l mode could be a

few hundred. For a = O and for low values of a, we have

solved eigenvalues only in the range from cutoff (effective

index = 2.13, or normalized propagation constant [19]

V= O) to the highest possible effective index (effective
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Fig. 13. Reduction of spurious solution and variation of V for channel
waveguide with penafty term, total mesh division 18 X 19.
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Fig. 14. Eigenvalues for channel waveguide with penalty term, tota
mesh division 18x 19.

index = 2.25, or V =1.0), and Fig. 15 shows the reduction

of spurious solutions in that range. We know that with zero

penalty parameter, most of the spurious solutions appear

at the beginning of the spectrum, which is outside the

above mentioned range.

Again, as illustrated in Figs. 8 and 9, we found a major

benefit in using the penalty method was the improvement

of eigenvectors, Above a small penalty parameter, all the

physical propagating eigenmodes were clearly identified for

the, given symmetry plane, whereas without the penalty

parameter many of them were unrecognizable. The disper-

sion characteristics are shown in Fig. 16 for the complete

set of propagating eigenmodes for this channel waveguide.

V. COMPUTATIONAL REMARKS

A vector H field finite element formulation has been

used for all these solutions. For channel waveguide, infinite

elements [12] have been added to orthodox finite element

representation to extend the problem’s physical domain to

infinity. For smaller order eigenvalue problems we have

used the NAG [20] F02AEF routine (Householder reduc-

tion and QL algorithm), but for larger order problems
(order more than 200) we have used an efficient sparse

routine, being a modification of an earlier complex version

[11], but now exploiting the real symmetric properties of

the matrices. For a matrix order of 1120 this routine takes

less than 2.9 percent of the storage and only about 0.17

percent of the computational time to calculate any 5 eigen-

‘[ Channe[ waveguide

Fig. 15. Total eigenmodes and recognized eigenmodes for channel wave-

guide in the range V= O to V= 1, with penalty term, totaf mesh
division 18X 19.

Fig. 16. Dispersion characteristics for channel waveguide for magnetic

wall symmetry, using penalty term a = 1.0, total mesh division 18X 19.

vectors, compared with the dense NAG F02AEF routine.

We have used only first-order shape functions, because

higher order shape functions make the matrices denser [1],

[11], [12]. The matrix routine used, which takes advantage

of all zero elements, shifts the optimum tradeoff from use

of a few higher order elements towards many low-order

elements [1].

VI. CONCLUSIONS

We have shown in Figs. 3,7, and 11-13 the effect of the

additional penalty term in reducing spurious solution. For

the first four problems we have used a dense matrix routine

to solve for all the eigenmodes of the eigenvalue problem.

Using 9 mesh divisions in each coordinate, at a = 0.5 the

number of spurious solutions below the first physical mode

TMII mode fell from 25 to 1 (Fig. 7) and at the same time

the eigenvector quality improved very considerably (Figs. 8

and 9). At the same time the eigenvalue error increased by

only 0.05 percent from the initial error of 0.27 percent.

This method does not need any additional storage require-

ment as the order of the original matrix remains the same.
There is a slight increase of computational time (about 5

percent). Similarly, Fig. 3 shows the reduction of spurious

modes for mesh = 7. The reduction of spurious modes for

inhomogeneous waveguide can be seen in Fig. 11. Fig. 12

illustrates the effect of reducing spurious solutions by using

penalty method for rectangular dielectric guide, whereas
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Fig. 13 shows the same for channel guide. Fig. 16 repre-

sents a set of dispersion characteristics for integrated optic

channel waveguide. It was possible to recognize all the

physical eigenmodes for this guide (with magnetic wall

symmetry) when using the penalty parameter. Without the

penalty many of the higher order modes were not recogniz-

able properly for the same mesh refinement.

Since completing this work, the authors have come across

similar studies in elastic waves of coupled fluid/solid sys-

tems [21]. Briefly, a penalty term is added for Icurl012 over

the fluid like our Idivll 12 term of (2). No reference is made

to any improvement of the field solutions, but interest-

ingly, their results for eigenvalue dependence on penalty

function have precisely the form of our Figs. 2, 4, and 10.

Like our H field plot of a spurious mode in Fig. 6, they

give [21] sketches of spurious “circulation modes.”

A reviewer has pointed out to us a recent conference

paper [22] which describes use of the penalty method to

eliminate spurious modes in three-dimensional electromag-

netic cavity problems.
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