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Penalty Function Improvement of
Waveguide Solution by
Finite Elements
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Abstract —The finite element method is a well-established method for
the solution of a wide range of guided wave problems. One drawback
associated with the powerful vector formulation is the appearance of
spurious or nonphysical solutions. A penalty function method has been
introduced to the finite element formulation, to reduce or eliminate spuri-
ous solutions. It also improves the quality of the physical field solutions.
The method has been applied for the solution of metallic homogeneous and
inhomogeneous guides, and integrated optics guides.

I. INTRODUCTION

HE FINITE ELEMENT method has become a power-

ful tool throughout engineering for its flexibility and
versatility. This is a powerful technique for complicated
electromagnetic, structural, heat, or fluid flow problems.
There are a few different types of variational formulations
which are available to solve electromagnetic wave propaga-
tion problems. A scalar variational formulation [1] which is
simplest among them, is limited in scope, not being suit-
able (except as an approximation) for general inhomoge-
neous and general anisotropic problems. There are differ-
ent types of vector variational formulations such as E, /H,,
E, H, and E + H, and these are suitable for a wide range
of practical complicated waveguides. However, these vector
finite element solutions have been known to include non-
physical spurious solutions [2]-[12]. Variational formula-
tions using transverse field components [13], [14], solved by
the Rayleigh-Ritz method or method of moments, do not
have spurious solutions, but these formulations are not
valid for general anisotropic materials, the functionals are
not self adjoint, and because of the additional differentia-
tion involved with them, these are not very attractive for
their implementation in a finite element method. The non-
appearance of spurious solution in this formulation may be
due to the divergence free basis functions.

Though the existence of spurious solutions has been
quoted by many authors, little work has been done to
reduce their number or to eliminate them. Konrad [5]
suggested imposing boundary conditions rigorously to
eliminate them, but that did not prove to be adequate [11],
[12]. Mabaya et al. [6] have reduced the number of spuri-
ous solution for E, /H, formulation, by explicitly enforcing
the continuity of the tangential components of the trans-
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verse fields at the interfaces by using Lagrange multipliers.
The disadvantage of that method was the greatly increased
complexity of the program and of the increased numerical
operations necessary to enforce those continuity condi-
tions; also this E, /H, formulation is limited to a diagonal
permittivity tensor. In this paper we will describe use of a
penalty method to reduce or eliminate spurious solutions.
A bonus of the penalty method, as reported in other
applications [15], is found in the significantly improved
smoothness of the resulting field.

II. SPURIOUS SOLUTIONS

The most serious difficulty in using a vector finite ele-
ment analysis is the appearance of extraneous nonphysical
or spurious modes [2]~[12]. Spurious solutions do not exist
in a scalar formulation because the operator is positive
definite, but with a vector finite element method the opera-
tor is no longer positive definite. In defining a vector field
fully, we need to define both the curl and the divergence of
the vector field at every point in space. In the conventional
vector field finite element formulations, their Euler equa-
tions satisfy Helmholz’s equations but do not satisfy divB
= (. This may cause the system to be excessively flexible,
which in turn is believed [11] to be responsible for spurious
modes.

Spurious solutions are found to spread all over the
cigenvalue spectrum, some of them appearing below any
true modes and some between the physical modes. As one
increases the mesh refinement to improve the accuracy of
the solution the number of spurious solutions also in-
creases.

If one wants to compute a set of eigenmodes, it is
difficult and quite cumbersome to distinguish between the
spurious and the physical modes of the guide. Spurious
modes can be identified by observing their dispersion curve
[2], [4]- Another simple way to identify them is to observe
their eigenvectors. In the case of a nonphysical mode the
fields vary in an unreasonable, sometimes random fashion
over the guide cross section, so that a plot of the field
solution can also provide a good, if somewhat tedious test
[3]. They can also be checked by observing convergence of
the solution with mesh refinements. Because of the incon-
sistent spatial variations of the field for the spurious eigen-
modes, if one calculates its divH it will be quite high
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compared to that of a physical eigenmode. This criteria has
been successfully used [11], [12] to filter out most of the
spurious solutions from a set of calculated eigenvectors.

Rather than calculate the spectrum-and eigenvectors and
then filter out, a posteriori, any spurious solution, the
strategy of this new work is to apply the constraint a
priori; spurious modes should then be removed rather than
just recognized. We have added the least squares constraint
of satisfying divH to the original functional J so that
explicitly the Euler equations are the Helmholtz equation
plus the vanishing of divH.

II1.

The penalty method [16], [17] can impose a specific
constraint on certain solution variables, and it has been
used in structural engineering problems to impose specific
boundary conditions [16]. This method has also been suc-
cessfully used to eliminate spurious solutions in acoustic
guide problems [15]. For our electromagnetic problem we
add a functional whose Euler equation is the satisfaction of
divB =0.

We have considered the penalty method, used with the
full vector H field formulation. This formulation has been
chosen because of its accuracy near cutoff, ability to con-
sider general lossless arbitrary tensor permittivity, and
natural field continuity across the interelement boundaries
[12]. This often quoted Berk’s [18] formulation can be
written as [5], [10]-[12]

PENALTY METHOD

2 J(vxH)* &\ (v xH) g

@

(1)
/ H*-pHAQ

When we add the penalty constraint, the augmented func-
tional can be written as

2 [(v xH)*- & (v xH) d2+(a/e) [(v-H)*-(v-H) d2
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Fig. 1. Location of physical eigenvalues in the spectrum, percentage of
cutoff frequency error, and computing time as function of mesh divi-
sion and matrix order.

IV. RESULTS

We have used the penalty method to eliminate or reduce
spurious solutions to various problems, the first being
homogeneous and then inhomogeneous-loaded metal wave-
guide where we know the exact solutions. We then con-
tinue to some integrated optic structures.

w

)

/ H*-pHAQ

where a is the penalty number. This equation has the
desired additional Euler equation divB = 0, in precisely the
manner that terms are added [18] to give desired boundary
conditions. The constraint is imposed in a least square
sense: the larger the value of penalty number, the heavier is
the constraint imposed on the corresponding Euler equa-
tion. In using the penalty method, one important consider-
ation is the choice of an appropriate penalty number; this
will be discussed in the next section. This imposition of the
constraint can be compared with the changing of natural
boundary conditions of an Euler equation by introducing
an additional appropriate integrand [18]. One advantage of
using the penalty method is that it does not increase the
matrix order, and the additional computational time is
negligible.

A. Hollow Rectangular Metal Guide

We have chosen this first problem because of its simple
closed form solutions. Applying the finite element method
[1], the accuracy of the solution depends on the mesh
refinement and order of the shape functions. For higher
accuracy we need finer mesh divisions or higher order
shape functions, but increasing either the number of mesh
divisions or the order of shape functions increases the
number of spurious solutions. The effect of mesh has been
shown in Fig. 1 for a rectangular guide considering only
one-quarter of the guide (using two symmetric magnetic
wall planes). Using first degree shape functions, the ab-
scissa denotes the number of mesh divisions in each coordi-
nate (and the corresponding matrix order); the right-hand
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ordinate gives the computing time (in millions of opera-
tional counts) and the left hand gives, for the first four TM
modes, the resulting cutoff frequency error and its location
(order) in the computed spectrum.

Fig. 2 shows the variation of computed eigenvalue (k2)
for TE and TM modes at cutoff with the penalty parameter
{(for mesh division = 7). All the spurious solutions in this
part of the spectrum come from the origin, varying almost
linearly with o and having quite large but different slopes.
Eigenvalues for true TM modes increase very slowly with
penalty parameter, but for TE mode do not vary with « (at
cutoff). In Fig. 3 we can observe the locations in the
spectrum of the TE;; and TM,; modes, as « is increased
from zero, where the locations are 19 and 20, respectively.
At « equal to 0.5, the TE,; and TM,; mode now appear at
2 and 3 eigenlocation, respectively; i.e., there is only one
spurious mode before the first two physical modes, instead

of 18 when no penalty term has been added. Similarly we
can see at a«=1.1 there is no spurious solution before the
first two eigenvalues. We can also observe that there are 7
spurious modes between TM;; and next physical mode
TM,, for a zero, whereas at a=1.1 there is only one
spurious mode among the first four physical modes. Look-
ing at Figs. 2 and 3, we see how one can eliminate spurious
modes among any number of dominant physical modes.

The error associated with the physical modes are quite low,

particularly for the lower order modes. For TE modes at

0 Bl 2 3 .5
-

Fig. 4. Variation of k3 with penalty term for hollow rectangular wave-
gude, B = 0.5 rad /mm, mesh division 9 X 9.

cutoff there is exceptionally no addition of error from the
penalty term as the additional term of (2) is identically zero
in this formulation at cutoff. This is because the TE mode
at cutoff has a longitudinal component only of H field, to
give a divergence-free field.

Fig. 4 shows the variation of k3 with penalty parameter
a. Here we calculate the TM modes above cutoff, at a fixed
propagation constant =0.5 rad/mm and using a mesh
division of 9. Here again, as in Fig. 2, k7 varies very
slowly with o for physical modes but rapidly for spurious
modes. It is of interest to examine the field solution for
these spurious modes, and for the above problem with a
zero, the magnetic fields are shown of the physical TM,
mode in Fig. 5 and of the spurious ‘S};” mode in Fig. 6. In
these figures we have considered only one-quarter of the
guide using two-fold symmetries with the two magnetic
walls. For the TMy; mode, the H, and H, spatial varia-
tions and their vector combinations are consistent, but not
for the §}; mode. Specifically 6H, /6x and 6H, /8y have

opposite signs throughout the region for the TM;; mode
but the same sign for the S;;. The latter solution is there-
fore incapable of satisfying divB = 0, and so is not physi-

cally admissible.
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Fig. 7. Reduction of spurious solution with penalty term, for hollow
rectangular waveguide, mesh division 9 X 9.

Fig. 7 shows the reduction of spurious solutions with «
for this same mesh refinement of Figs. 4-6. Fig. 4 also
shows the error introduced by this penalty method. At
a = 0 the percentage of error was 0.27 percent for the TM,,
mode (due to mesh divisions, word length, etc.). At a=0.5
the increase in error due to this penalty method was only
0.05 percent and the error increases by about 0.13 percent
at a=1.1 for the same TM;; mode. Fig. 8 shows the
variation of H, and H, field along the x direction (for H,
field at the center of the guide, for H, field at the top edge
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of the guide) for a =0 and a = 0.5, while Fig. 9 shows the
variation along the y direction for a =0 and a = 0.5. These
figures showed dramatic improvements in smoothness of
eigenvectors when applying the penalty functional—a fea-
ture noted in other applications of the penalty function

[15].

B. Inhomogeneously Loaded Metal Guide

A rectangular inhomogeneous waveguide problem has
been solved using the vector H field finite element formu-
lation. This problem involves a material discontinuity which
gives rise to different wavenumbers of k, and k, in the
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Fig. 11. Reduction of spurious solutions for inhomogeneously loaded
metal guide with penalty term, mesh division 8 X 8.

two different regions. The variation of k7 (the cutoff value
ki = w’ue,) with a is shown in Fig. 10. Here the k§ for
LSE modes varied slightly with « whereas LSM modes
remained unchanged. Similarly as in Fig. 2 or Fig. 4, k2 of
spurious modes varied linearly with « with quite large
slopes. Fig. 11 shows the reduction of spurious mode with
a. When no penalty method was applied, then among the
first 32 modes only 4 were physical modes, whereas at
a=1.0, there were only two spurious modes among the
first 10 modes and no spurious mode appeared before the
first 2 physical modes. With no penalty function, error for
the LSE,; mode was 0.52 percent, but at a=0.5 it in-
creased by 0.5 percent and at a«=1.0 by another 0.8
percent. Percentage errors for the LSM modes were un-
changed with a.

C. Rectangular Dielectric Guide

We have used the penalty function to see its effect in
reducing spurious solution for optical guides. For this we
first solved rectangular dielectric waveguide, where again
we can exploit its two-fold symmetries to reduce matrix
order. We first used a coarse mesh to allow using a dense
matrix routine, and the reduction of spurious modes is
shown in Fig. 12. Most of the spurious modes appeared at
the beginning of the spectrum when using no penalty
function; there were 53 spurious modes before the first
physical solution, the HyY mode. When applying a penalty
of a=1.0, then, there was no spurious solution before the
first physical mode. It was not possible to calculate the
absolute error as no analytical solution is available for this
problem, but for this mesh size (5 inside the guide and 2
outside, for each of the x and y dimensions, and matrix
dimension 169) variation of frequency was limited to +0.2
percent over a wide range of «, and additional computa-
tional time was less than 2-3 percent. Similarly, for a
smaller number of mesh divisions (order of matrix 108) the
number of spurious solutions was 36 before the Hyj mode,
but with a penalty parameter =1.0, all of them had been
shifted above the real mode.
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D. Channel Waveguide

Channel waveguide is an important optical waveguide,
which again we solved using a full vector H field formula-
tion. This type of waveguide is a combination of three
types of dielectric materials, with waveguide permittivity
differences between guide and substrate that are quite
small. We now have only the single symmetry plane, and
for reasonable mesh refinement and accuracy the matrix
order becomes quite large—too large for dense matrix
subroutines. We have therefore used a very efficient package
that takes full advantage of the sparsity and symmetry of
the matrices [11]. As a Sturm count was not available in the
real symmetric version of this package we could not de-
termine the absolute location of a particular eigenvalue in
the spectrum. The reduction of spurious modes below the
first physical mode H{; is shown in Fig. 13 over the range
of a=1-10% The number of spurious solutions reduces
uniformly with «; at a=1.0 there were 31 spurious modes
before the Hj; mode, whereas for a=10* their number
reduces to only 1. In the same range of penalty terms we
have illustrated the eigenvalues in Fig. 14. Spurious solu-
tions are represented by the crosses whereas the first physi-
cal mode H7 is represented by a circle. At around a = 2500,
we observe the degeneracy of two modes, the H;; with a
spurious mode. The eigenvalue of Hjj varies very slowly
with a and the number of spurious modes below this H7,
mode falls rapidly. We scanned the spectrum for a = 0 over
a considerable range, eigenvalues starting from zero, and
we believe the number below the first Hyj mode could be a
few hundred. For a =0 and for low values of a, we have
solved eigenvalues only in the range from cutoff (effective
index =2.13, or normalized propagation constant [19]
V'=0) to the highest possible effective index (effective
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index =2.25, or ¥'=1.0), and Fig. 15 shows the reduction
of spurious solutions in that range. We know that with zero
penalty parameter, most of the spurious solutions appear
at the beginning of the spectrum, which is outside the
above mentioned range.

Again, as illustrated in Figs. 8 and 9, we found a major
benefit in using the penalty method was the improvement
of eigenvectors. Above a small penalty parameter, all the
physical propagating eigenmodes were clearly identified for
the given symmetry plane, whereas without the penalty
parameter many of them were unrecognizable. The disper-
sion characteristics are shown in Fig. 16 for the complete
set of propagating eigenmodes for this channel waveguide.

V. COMPUTATIONAL REMARKS

A vector H field finite element formulation has been
used for all these solutions. For channel waveguide, infinite
elements [12] have been added to orthodox finite element
representation to extend the problem’s physical domain to
infinity. For smaller order eigenvalue problems we have
used the NAG [20] FO2AEF routine (Householder reduc-
tion and QL algorithm), but for larger order problems
(order more than 200) we have used an efficient sparse
routine, being a modification of an earlier complex version
[11], but now exploiting the real symmetric properties of
the matrices. For a matrix order of 1120 this routine takes
less than 2.9 percent of the storage and only about 0.17
percent of the computational fime to calculate any 5 eigen-
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Fig. 16. Dispersion characteristics for channel waveguide for magnetic
wall symmetry, using penalty term a = 1.0, total mesh division 18 X 19.

vectors, compared with the dense NAG FO02AEF routine.
We have used only first-order shape functions, because
higher order shape functions make the matrices denser [1],
[11], [12]. The matrix routine used, which takes advantage
of all zero elements, shifts the optimum tradeoff from use
of a few higher order elements towards many low-order
elements [1].

V1. CONCLUSIONS

We have shown in Figs. 3, 7, and 11-13 the effect of the
additional penalty term in reducing spurious solution. For
the first four problems we have used a dense matrix routine
to solve for all the eigenmodes of the eigenvalue problem.
Using 9 mesh divisions in each coordinate, at a= 0.5 the
number of spurious solutions below the first physical mode
TM,; mode fell from 25 to 1 (Fig. 7) and at the same time
the eigenvector quality improved very considerably (Figs. 8
and 9). At the same time the eigenvalue error increased by
only 0.05 percent from the initial error of 0.27 percent.
This method does not need any additional storage require-
ment as the order of the original matrix remains the same.
There is a slight increase of computational time (about 5
percent). Similarly, Fig. 3 shows the reduction of spurious
modes for mesh = 7. The reduction of spurious modes for
inhomogeneous waveguide can be seen in Fig. 11. Fig. 12
illustrates the effect of reducing spurious solutions by using
penalty method for rectangular dielectric guide, whereas
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Fig. 13 shows the same for channel guide. Fig. 16 repre-
sents a set of dispersion characteristics for integrated optic
channel waveguide. It was possible to recognize all the
physical eigenmodes for this guide (with magnetic wall
symmetry) when using the penalty parameter. Without the
penalty many of the higher order modes were not recogniz-
able properly for the same mesh refinement.

Since completing this work, the authors have come across
similar studies in elastic waves of coupled fluid /solid sys-
tems [21]. Briefly, a penalty term is added for |curl v|? over
the fluid like our |divH |? term of (2). No reference is made
to any improvement of the field solutions, but interest-
ingly, their results for eigenvalue dependence on penalty
function have precisely the form of our Figs. 2, 4, and 10.
Like our H field plot of a spurious mode in Fig. 6, they
give [21] sketches of spurious “circulation modes.”

A reviewer has pointed out to us a recent conference
paper [22] which describes use of the penalty method to
eliminate spurious modes in three-dimensional electromag-
netic cavity problems.
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